CO-REGULAR SPLIT DOMINATION IN GRAPHS

${ }^{1}$ M.H.Muddebihal, ${ }^{2}$ Priyaka.H.Madarvadkar
${ }^{1}$ Professor of Mathematics
Gulbarga University Kalaburgi -585106
Karnataka India
${ }^{2}$ Research Scholar, Department of Mathematics
Gulbarga University Kalaburgi -585106
Karnataka India

Abstract

In this paper, we introduce the new concept in domination theory. A dominating set $D \subseteq$ $V(G)$ is a coregular split dominating set if the induced subgraph $\langle V-D\rangle$ is regular and disconnected. The minimum cardinality of such a set is called a coregular split domination number and is denoted by $\gamma_{c r s}(G)$. Also we study the graph theoretic property of $\gamma_{c r s}(G)$ and many bounds were obtained interms of G and its relationship with other domination parameters were found.

KEYWORDS: Dominating set /Split domination / Total domination/ Regular domination / Coregular split domination.

SUBJECT CLASSIFICATION NUMBER: 05C69, 05C70

1. INTRODUCTION

All graphs considered here are simple and without isolated vertices. Let $G=(V, E)$ be a graph with $|V|=P$ and $|E|=q$. We denote $\langle V-D>$ to denote the subgraph induced by the set of vertices of D and $N(v)$ and $N[v]$ denote the open and closed neighborhood of a vertex v, respectively. Let $\operatorname{deg}(v)$ be the degree of a vertex v and as usual $\delta(G)$ the minimum degree and $\Delta(G)$ maximum degree. In general we follow the notation and terminology of Harary [2].

A vertex cover in a graph G is a set of vertices that covers all the edges of G. The vertex covering number $\propto_{o}(G)$ is a minimum cardinality of a vertex cover in G. An edge cover of a graph G without isolated vertices is a set of edges of G that covers all the vertices of G.The edge covering number $\alpha_{1}(G)$ is a minimum cardinality of a edge cover in G.

A line graph $L(G)$ is the graph whose vertices corresponds to the edges of G and two vertices in $L(G)$ are adjacent if and only if the corresponding edges in G are adjacent.

A block graph $B(G)$ is the graph whose set of vertices is the union of set of blocks of G in which two vertices are adjacent if and only if the corresponding blocks of G are adjacent.

A graph is r-regular when all its vertices have degree r, namely $\triangle(G)=\delta(G)=r$. We begine with standard definitions from domination theory.

A set $D \subseteq V$ is a dominating set of G if for every vertex $v \in V-D$, there exists a vertex $u \in D$ such that v and u are adjacent. The minimum cardinality of a dominating set in G is the domination number and denoted by $\gamma(G)$. For comprehensive work on the subject has been done in [3].

A dominating set $D \subseteq V(G)$ of a graph $G=(V, E)$ is called a connected dominating set if the induced subgraph $<D>$ is connected. The connected domination number $\gamma_{c}(G)$ of G is the minimum cardinality of a connected dominating set of G see [4].

A dominating set $D \subseteq V(G)$ is a total dominating set of a graph G if the induced graph $<D>$ does not contain an isolated vertex. The total domination number $\gamma_{t}(G)$ of G is the minimum cardinality of a total dominating set of G. The total domination in graph was introduced by Cockayne et al.[1] in 1980.

A dominating set $D \subseteq V(G)$ is a cotatal dominating set if the induced subgraph $<V-D>$ has no isolated vertices. The cototal domination number $\gamma_{c t}(G)$ of G is the minimum cardinality of cototal dominating set of G.

A dominating set D of G is called split dominating set if the induced subgraph $<V-D>$ is disconnected. The split domination number is $\gamma_{s}(G)$ of a graph G is the minimum cardinality of a split dominating set of G.

A dominating set D of G is called strong split dominating set of G if $<V-D>$ is totally disconnected with at least two vertices. The strong split domination number $\gamma_{s s}(G)$ of a graph G is the minimum cardinality of a strong split dominating set of G [5].

A dominating set D of G is a global dominating set if it is also dominating set of \bar{G}. A minimal cardinality of global dominating set is the global domination number and is denoted by $\gamma_{g}(G)[7]$.

A dominating set D of $L(G)$ is a global dominating set if it is also dominating set of $L(\bar{G})$. A minimal cardinality of D is a global domination number of $L(G)$ and denoted by $\gamma_{g l}(G)$ see[6].

2. RESULTS

We develope the following results for some standard graphs.
Theorem 1: a] For any path p_{p} with $p \geq 2$ vertices,

$$
\gamma_{c r s}\left(p_{p}\right)=\left\lfloor\frac{p}{2}\right\rfloor
$$

b] For any star $k_{1, p}$ with $p \geq 2$ vertices,

$$
\gamma_{c r s}\left(k_{1, p}\right)=1
$$

Theorem 2: For any connected (p, q) graph G with $p \geq 3$, then

$$
\gamma_{c r s}(G)+\gamma(G) \leq p .
$$

Proof: Let $V_{1}=\left\{v_{1}, v_{2}, \ldots \ldots \ldots \ldots, v_{n}\right\} \subseteq V(G)$ be the set of all non end vertices in G. The $V^{\prime}{ }_{1} \subseteq V_{1}$ forms a $\gamma-$ set of G. Let $V_{2}=\left\{v_{1}, v_{2}, \ldots \ldots \ldots \ldots, v_{m}\right\} \subseteq V_{1}$ where every $v_{i} \in V_{2}$ is adjacent to end vertices. Further $V_{3}=\left\{v_{1}, v_{2}, \ldots \ldots \ldots \ldots, v_{k}\right\} \subseteq V_{1}$ be the set of vertices with maximum degree. Suppose $<$ $V(G)-V_{2} \cup V_{3}>$ is disconnected and $\forall v_{i} \epsilon\left[V(G)-\left\{V_{2} \cup V_{3}\right\}\right]$ has same degree $<V_{2} \cup V_{3}>$ forms a $\gamma_{\text {crs }}-$ set. Otherwise there exists a set $A=\left\{v_{1}, v_{2}, \ldots \ldots \ldots \ldots, v_{k}\right\}$ of vertices which are neighbors of some vertices in V_{3}. Now $<V(G)-V_{2} \cup V_{3} \cup A>$ is disconnected with isolated vertices of cardinality at least two. Then $\left|V_{2} \cup V_{3} \cup A\right|+\left|V_{1}\right| \leq V(G)$, which gives $\gamma_{c r s}(G)+\gamma(G) \leq p$.

The following result gives an upper bounds for $\gamma_{c r s}(G)$ in terms of γ_{c} and γ_{t} of G.
Theorem 3: For any connected (p, q) graph G with ≥ 3, then

$$
\gamma_{c r s}(G) \leq \gamma_{c}+\gamma_{t} \text { and } G \neq W_{p}(P>5) .
$$

Proof: Let $V=\left\{v_{1}, v_{2}, \ldots \ldots \ldots \ldots, v_{k}\right\}$ be the vertex set of G. Now for the graph $G \neq W_{p}$ with $p \geq 4$, suppose $p \leq 4$ the $\gamma_{c}+\gamma_{t}=3=\gamma_{c r s}(G)$ and result holds. Further if $P>5,\left|\gamma_{c}+\gamma_{t}\right|=3$ and $\gamma_{c r s}\left[W_{p}\right]=\frac{p}{2}+1>\left|\gamma_{c}+\gamma_{t}\right|$. Hence $G \neq W_{p}$ with $P>5$. Now let $A=\left\{v_{1}, v_{2}, \ldots \ldots \ldots \ldots, v_{n}\right\} \subseteq V(G)$ suppose for every $v \in\{V(G)-A\}$ is adjacent to at least one vertex of A. If $<A>$ has no isolated vertices then A itself is a total dominating set of G. Otherwise let $v \in\{V(G)-A\}$ and if $\{A\} \cup\{v\}$ has no isolated vertex. Clearly $\{A\} \cup\{v\}$ is a minimal total dominating set of G. Let $A_{1}=\left\{v_{1}, v_{2}, \ldots \ldots \ldots \ldots, v_{n}\right\}$ be the set of all end vertices in $G . A_{2}=\left\{V(G)-A_{1}\right\}$ be the set of all nonend vertices in G. Suppose there exists a minimal set of vertices such that $N\left[v_{i}\right]=V(G) \forall v_{i} \in A_{2}, 1 \leq i \leq n$ then A_{2} forms a minimal dominating set of G. Further if $A_{2}=\left\{V(G)-A_{1}\right\}$ has exactly one component then A_{2} itself is a connected dominating set of G. Suppose A_{2} has more than one component then attach the minimum set of vertices. $S^{\prime}=A_{2} \cup$ $\{u, w\}$ which are in $u-w$ path, $\forall u, w \in\left\{V(G)-A_{2}\right\}$. Hence S^{\prime} is a minimal connected dominating set of G. Further let $A_{2}=\left\{v_{1}, v_{2}, \ldots \ldots \ldots, v_{i}\right\}$ be the set of all nonend vertices suppose there exists a minimal dominating set S such that the distance between the two vertices of S is at least two clearly there exists more than one component and each component in $\langle V-S\rangle$ is regular forms $\gamma_{\text {crs }}-$ set. Thus $|S| \leq$ $\left|A_{2}\right|+|A|$. Hence $\gamma_{c r s}(G) \leq \gamma_{c}+\gamma_{t}$.

Now the next theorem gives lower bound on the coregular split domination number of graph (G).
Theorem 4: For any connected (p, q) graph G with $p \geq 3$, then

$$
\gamma_{c r s}(G) \geq \gamma_{g l}(G)-1
$$

Proof: Let $E=\left\{e_{1}, e_{2}, \ldots \ldots \ldots \ldots, e_{n}\right\}$ be the set of edges in G. Now consider $E_{1}=\left\{e_{1}, e_{2}, \ldots \ldots \ldots, e_{k}\right\} \subseteq$ $E(G)$ be the set of edges with maximum edge degree and $E_{2}=\left\{e_{1}, e_{2}, \ldots \ldots \ldots, e_{j}\right\} \subseteq E(G)$ be the set of edges with minimum edge degree. Suppose $E^{\prime}{ }_{1} \subseteq E_{1}$ and $E^{\prime}{ }_{2} \subseteq E_{2} \forall v \in\left[V[L(G)]-\left\{E^{\prime}{ }_{1} \cup E^{\prime}{ }_{2}\right\}\right]$ is adjacent to at least one vertex of $\left\{E^{\prime}{ }_{1} \cup E^{\prime}{ }_{2}\right\}$ and $\left\{\overline{E^{\prime}{ }_{1} \cup E^{\prime}{ }_{2}}\right\}$. Since each edge of G is a vertex in $L(G)$, then $\left\{E^{\prime}{ }_{1} \cup E^{\prime}{ }_{2}\right\}$ is a global dominating set of $L(G)$. Further let $D=\left\{v_{1}, v_{2}, \ldots \ldots \ldots, v_{n}\right\}$ be the set of vertices in G, such that $[V(G)-N(D)]$ is regular and which gives more than one component. Then D
forms a minimal coregular split dominating set of G. Thus $|D| \geq\left|E^{\prime}{ }_{1} \cup\right| E^{\prime}{ }_{2}|-1|$ hence $\gamma_{c r s}(G) \geq$ $\gamma_{g l}(G)-1$.

Theorem 5: For any connected (p, q) graph G with $P \geq 3$,then

$$
\gamma_{c r s}(G) \geq q-\propto_{1}(G)+\gamma_{g}(G)-1 .
$$

Proof: Let $A=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots, v_{l}\right\}$ be set of all nonend vertices in G. Let $B_{1}=\left\{v_{1}, v_{2}, \ldots \ldots ., v_{m}\right\} \subseteq A$ be a set of vertices with maximum degree. $B_{2}=\left\{v_{1}, v_{2}, \ldots \ldots . v_{n}\right\} \subseteq A$ be set of vertices with minimum degree in G.The distance between two vertices of B_{1} and B_{2} is at most 2 . Hence $\left\{B_{1} \cup B_{2}\right\}$ is γ - set if $\left[V(G)-\left\{B_{1}\right\} \cup\left\{B_{2}\right\}\right]$ disconnected and having vertices with same degree forms a $\gamma-$ set. Let $B=$ $\left\{e_{1}, e_{2}, \ldots \ldots, e_{n}\right\}$ be the set of all end edges. Suppose $B^{\prime}=\left\{e_{1}, e_{2}, \ldots \ldots \ldots, e_{k}\right\} \subseteq E(G)-B$ be the set of edges such that dist $\left(e_{i}, e_{j}\right) \geq 21 \leq i \leq n, 1 \leq j \leq k$, then $B \cup F$, where $F \subseteq B^{\prime}$ be the minimal set of edges which covers all the vertices in G, such that $|B \cup F|=\propto_{1}(G)$. Further let $S=\left\{v_{1}, v_{2}, \ldots \ldots \ldots, v_{p}\right\} \subseteq$ $V(G)$ and $S \subseteq V(\bar{G})$. If $N[S]=V(\bar{G})$. Then S is dominating set for G and (\bar{G}). Therefore S forms a global dominating set of G. Now, we have $\left|B_{1} \cup B_{2}\right| \leq q-|B \cup F|+|S|-1$, which gives $\gamma_{\text {crs }}(G) \geq q-$ $\alpha_{1}(G)+\gamma_{g}(G)-1$.

We establish the relationship between, split domination total domination with coregular split domination number in the following theorem.

Theorem 6: For any connected (p, q) graph G with $\gamma_{c r s}$ is 1 -regular then

$$
\gamma_{c r s}(G) \leq \gamma_{s}(G)+\gamma_{t}(G)-1 \text { and } G \neq W_{p}(P>5) .
$$

Proof: Let $A_{1}=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots, v_{n}\right\} \subseteq V(G)$ be the set of all end vertices in G and $A^{\prime}{ }_{1}=V(G)-A_{1}$. Suppose there exists vertex set $F \subset A_{1}^{\prime}$ such that $D=[V(G)-F]$ is a dominating set of G. Hence $\langle D\rangle$ has more than one component with same degree than D forms a $\gamma_{c r s}$ - set. Suppose there exists set of vertices $C \subseteq A_{1}{ }^{\prime}$ where $C \cup A_{1}$ covers all vertices in G and if the subgraph $<V(G)-\left\{C \cup A_{1}\right\}>$ does not containany isolated vertex $C \subset A_{1}$ itself is a cototal dominating set of G.Otherwise if there exists a vertex $v \in\left[V(G)-\left\{C \cup A_{1}\right\}\right.$ with $\operatorname{deg}(v)=0$. Then $C \cup A_{1} \cup\{v\}$ forms a minimal $\gamma_{c t}-$ set of G. Further let $B^{\prime}=\left\{v_{1}, v_{2}, \ldots \ldots . v_{k}\right\} \subseteq V(G)$ be the set all nonend vertices in G. Then $B^{\prime} \subseteq A_{1}^{\prime}$ forms a minimal $\gamma-$ set of G. If $<V-D>$ is disconnected then B^{\prime} forms a split dominating set of G.Hence $|D| \leq\left|B^{\prime}\right|+$ $|C| \cup A_{1} \cup\{v\}-1$ and $\gamma_{c r s}(G) \leq \gamma_{s}(G)+\gamma_{t}(G)-1$.

Theorem 7: For any non-trivial tree T with $p \geq 2$, then $\gamma_{c r s}(T)=\alpha_{0}(T)$ if and only if $\gamma_{c r s}$ is zero regular.
Proof : Suppose $\gamma_{c r s}(T)=\alpha_{0}(T)$ and $\gamma_{c s r}-$ set is not zero regular. Let $D=\left\{v_{1}, v_{2}, \ldots \ldots \ldots \ldots, v_{n}\right\}$ be a dominating set of T such that the distance between two vertices of D be at most three. If $\langle V-D\rangle$ is disconnected we consider the following cases.

Case1: Assume there exists at least one edge $e \in V(T)-D$ which is a component of disconnected $<$ $V(T)-D>$. Then $\gamma_{\text {crs }}$ is not zero regular, a contradiction.

Case2: Assume there exists a vertex $v \in \gamma_{c r s}-$ set and $\quad v \notin \alpha_{0}-s e t$. Then there exists $N(v)=u$. Such that an edge $u v \in\{V(T)-D\}$ a contradiction.

Conversly, suppose $\gamma_{c r s}(T)=\alpha_{0}(T)$, and $\gamma_{c s r}(T)$ is zero regular . Let $D=\left\{v_{1}, v_{2}, \ldots \ldots \ldots \ldots, v_{n}\right\}$ be a set of vertices such that the distance between two vertices of D be at most two. Hence $N(u) \cup N(v)=$ $\varphi, \forall u, v \in D$ and edge of T covered by the set D. Clearly $|D|=\alpha_{0}(T)$ since D is minimal dominating set of T and $\langle V-D\rangle$ is disconnected with $\operatorname{deg}(v)=0 \forall v \in\langle V-D\rangle$. Then D is also $\gamma_{\text {crs }}-$ set which is zero regular. Hence $\gamma_{c r s}(T)=\alpha_{0}(T)$.

In the following Theorem, we establish the upper bound for $\gamma_{c r s}(T)$ interms of vertices of graph G.
Theorem 8: For any non-trivial tree T with $p \geq 2$, then $\gamma_{c r s}(T) \leq p-m$. Where m is the number of end vertices in T.

Proof : Let $A=\left\{v_{1}, v_{2}, \ldots \ldots \ldots \ldots, v_{m}\right\} \subseteq V(T)$ be the set of all end vertices in T with $|A|=m$. Let $D=$ $\left\{v_{1}, v_{2}, \ldots \ldots \ldots \ldots, v_{n}\right\}$ be a dominating set of T.Such that the distance between two vertices of D is at most three. If $\langle V-D\rangle$ has more than one component. Then vertices of each component have same degree and all component are also have same degree. Then D is $\gamma_{\text {crs }}-$ set of a tree T. So that $|D|=p-|A|$ and gives $\gamma_{c r s}(T) \leq p-m$.

Theorem 9: For any non-trivial tree T with $p \geq 2$, then $\gamma_{c r s}(T)=\gamma_{s s}(T)$.
Proof: Let $H_{1}=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots, v_{l}\right\}$ be set of all vertices in $V(T)$. Let $H_{2}=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots, v_{m}\right\}$ be set of all nonend vertices adjacent to end vertices. $H_{3}=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots ., v_{n}\right\}$ be set of all nonend vertices which are not adjacent to end vertices. Let there exists $H^{\prime}{ }_{3} \subseteq H_{3}$ such that $D=\left\{H_{2}\right\} \cup\left\{H^{\prime}{ }_{3}\right\} \subseteq V(T)$. Where $\forall v_{i} \in V(T)-D$ is adjacent to at least one vertex of D. Hence D is a minimal dominating set of G. Further if $\forall v_{i} \in<V-D>\operatorname{deg}\left(v_{i}\right)=0$ with at least two vertices. Hence D is a $\gamma_{c r s}-$ set of G. Simillarly by definition of strong split dominating set the subgraph $\langle V-D\rangle$ is a null set with at least two vertices. Hence D is also a $\gamma_{s s}-\operatorname{set}$ of G. Clearly $\gamma_{c r s}(T)=\gamma_{s s}(T)$.

Further if there exists a set $E=\left\{e_{1}, e_{2}, \ldots \ldots \ldots \ldots, e_{j}\right\}$ be edges in $\langle V-D\rangle$ and each component of $V-$ D is K_{2}. Then D is a $\gamma_{c r s}-$ set but not $\gamma_{s s}-s e t$. For equality if $A=\left\{v_{1}, v_{2}, \ldots \ldots \ldots . . v_{k}\right\}$ be the set of vertices which are $N\left(v_{m}\right), \forall v_{m} \in B$ where $B=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots ., v_{l}\right\}$ such that $\{A\} \cup\{B\}$ forms the component as K_{2} in $\langle V-D\rangle$. Then $\forall v_{i} \in[\{V-D\}-\{A\}]$ or $[\{V-D\}-\{B\}]$ is an isolate. Thus either $\{D\}-\{A\}$ or $\{D\}-\{B\}$ is a $\gamma_{c r s}-$ set and also a $\gamma_{s s}(T)-$ set of a tree. Hence $\gamma_{c r s}(T)=\gamma_{s s}(T)$.

Theorem 10: For any non-trivial tree T with $p \geq 3$, then

$$
\gamma_{c r s}(T)+3 \geq\left\lfloor\frac{q-\gamma_{c}}{2}\right\rfloor .
$$

Proof: Let $V=\left\{v_{1}, v_{2}, \ldots \ldots \ldots \ldots, v_{l}\right\}$ be vertex set of T and $E=\left\{e_{1}, e_{2}, \ldots \ldots \ldots \ldots, e_{m}\right\}$ be edge set of T. And $A_{1}=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots, v_{m}\right\} \subseteq V(T)$ be set of all nonend vertices which are not adjacent to end vertices. If the distance between the two vertices of A_{1} and A_{2} is at most 2 . Suppose there exists a set $A_{2}{ }^{\prime} \subseteq$ A_{2} hence $S=\left[V(T)-\left\{A_{1} \cup A_{2}{ }^{\prime}\right\}\right]$ is a dominating set of T with the property that $\langle S\rangle$ is totally disconnected. Then S is a $\gamma_{c r s}-$ set of T. Let $H=\left\{A_{1} \cup A_{2}\right\}$ and $\forall v_{i} \in V(T)-H$ is adjacent to at least one vertex of H then H is dominating set of T and $\langle H\rangle$ is connected. Hence H is $\gamma_{c}-$ set of a tree T. Since every vertex of $\gamma_{c}-$ set is incident with the edges of T then $(E-H) / 2 \leq\{S+3\}$, implies that $|S|+3 \geq\left\lfloor\frac{|E|+|H|}{2}\right\rfloor$ and gives, $\gamma_{\text {crs }}(T)+3 \geq\left\lfloor\frac{q-\gamma_{c}}{2}\right\rfloor$.

Next theorem gives upper bound for $\gamma_{c r s}(T)$.

Theorem11: For any non-trivial tree T with $p \geq 3$, then

$$
\gamma_{c r s}(T) \leq \gamma_{t}[B(T)]+\delta(G)
$$

Proof: Let $V_{1}=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots, v_{n}\right\}$ be the set of end vertices of $V(T) . V_{2}=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots, v_{m}\right\}$ be the set of vertices adjacent to V_{1} there exists $V_{3}=\left\{V(T)-V_{1} \cup V_{2}\right\}$ then $S=\left\{V_{2} \cup V_{3}\right\}$ is a minimal dominating set of T. Suppose there exists a $N\left(V_{3}\right) \cap N\left(V_{2}\right)=\emptyset \forall V_{2}, V_{3} \in S$. Hence each edge of T covers by the set S and $\langle V-S\rangle$ is disconnected such that $\operatorname{deg}\left(v_{i}\right)=0 \forall v_{i} \in\langle V-S\rangle$ then S is a $\gamma_{c r s}-$ set which is zero regular. Further let D^{n} be dominating set of block graph $B(T)$ of a tree T and $A_{1}=$ $V\left[B(T)-D^{n}\right]$ such that $D_{1} \subseteq A_{1}$ and $<D_{1} \cup D^{n}>$ has no isolated vertex. Then $\left\{D_{1} \cup D^{n}\right\}$ is $\gamma_{t}-$ set of T. Let v be a point of minimum degree $\delta(T)$. Hence $|S| \leq\left|D_{1} \cup D^{n}\right|+|v|$ which gives, $\gamma_{c r s}(T) \leq$ $\gamma_{t}[B(T)]+\delta(G)$.

In the following two lemmas we have the sharp bound attained to $\gamma_{c r s}$ by considering each block of G which is complete graph K_{m} and K_{n}.

Lemma 1. If G has exactly one nonend block K_{n} and all vertices of K_{n} are incident with blocks which are K_{m} with $m \geq n$ (or) $m<n$. Then $\gamma_{\text {crs }}=n$.

Proof: Let K_{n} be a nonend block of G with vertex set $D=\left\{v_{1}, v_{2}, \ldots \ldots \ldots \ldots, v_{n}\right\}$. Suppose all vertices of K_{n} are incident with blocks which are K_{m}. We consider the following cases.

Case1: Suppose each vertex of K_{n} is incident with L number of blocks which are complete graphs K_{m} with $m \geq n$. Then D is a dominating set of G. Also the induced subgraph $\langle V(G)-D\rangle$ is disconnected and $m-1$ regular. Hence $|D|=\gamma_{\text {crs }}(G)$, which is also equal to n. Clearly $\gamma_{c r s}=n$.

Case2: Suppose each vertex of K_{n} is a cut vertex and incident with L number of blocks which are K_{m} with $m<n$. Then the induced subgraph $\left\langle V(G)-D>\right.$ is again disconnected and $m-1$ regular. Since $\forall v_{i} \in$ D is adjacent to at least one vertex of $V(G)-D$, then D is a $\gamma_{c r s}-$ set of G and $|D|=n$. Clearly $\gamma_{\text {crs }}=n$.

From the above lemma we concluded that, if there exists at least one block which is either K_{m-1} or K_{m+1} in L number of blocks. Then there does not exists $\gamma_{c r s}-s e t$.

Lemma 2: If G has exactly one cut vertex C incident with blocks which are $K_{n}, n \geq 2$, then $\gamma_{c r s}=C$.
Proof: Suppose G has exactly one cut vertex v which is incident with m number of $K_{n}(n \geq 2)$ blocks. Then every vertex of $\{G-V\}$ is adjacent to v.Thus $\{v\}$ is a $\gamma-$ set of G and $<G-V>$ is disconnected with m numbere of K_{n-1} blocks. Hence each component of $\langle G-V\rangle$ is K_{n-1} regular and $\{v\}$ is a $\gamma_{c r s}-$ set of G. Since v is a cu vertex then $\gamma_{c r s}=C$.

Theorem12: For any graph G with C cut vertices $\gamma_{c r s}=C$ if and only if G has exactly one nonend block K_{n} incident with complete blocks which are K_{n-c+1}.

Proof: Suppose $\gamma_{c r s}=C$. Let $H=\left\{B_{1}, B_{2}, \ldots \ldots, B_{n}\right\}$ be the set of n blocks of G. Let $A_{1}=$ $\left\{B_{1}, B_{2}, \ldots, B_{p}\right\}$ be the end blocks in G. Such that $K_{n}=H-A_{1}$ which is nonend block of G. Let $\left\{v_{1}, v_{2}, \ldots \ldots \ldots \ldots, v_{n}\right\}=V\left[K_{n}\right]$. Suppose $L_{1}=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots . v_{i}\right\} \subseteq V\left[K_{n}\right]$ be the set of cut vertices. We consider the following cases. Let D be a $\gamma_{c r s}-s e t$ of G.

Case1: Suppose $\left|L_{1}\right|$ cut vertices are incident with blocks which are K_{n-c}. Then L_{1} is dominating set of G. But $<V(G)-L_{1}>$ is not regular. Hence $\gamma_{c r s}=L_{1}$, contradiction.

Case 2: Suppose $\left\{v_{1}, v_{2}, \ldots \ldots \ldots, v_{n}\right\} \in L_{1}$ are incident with K_{n-c+2} blocks. Then $\left\{L_{1}\right\}$ is a dominating set of G. Further $<V(G)-\left\{v_{1}, v_{2}, \ldots \ldots \ldots \ldots, v_{n}\right\}>$ is not a regular, a contradiction.

Case 3: Suppose the number of cut vertices $\left|L_{1}\right|>\left|V\left[K_{n}\right]-L_{1}\right|$. Then L_{1} is a dominating set of G and $<$ $V[G]-L_{1}>$ is not regular, a contradiction.

Conversly, suppose G has $\left\{L_{1}\right\}=C$ cut vertices and exactly one nonend block K_{n} incident with complete blocks K_{n-c+1}. Then $\left\{L_{1}\right\}$ is a dominating set of G. Further $<V(G)-L_{1}>$ is regular with more than one component. Clearly D forms a $\gamma_{c r s}-$ set. Hence $|D|=\left|L_{1}\right|$ gives $\gamma_{c r s}=C$.

Theorem13: For any graph G with C cut vertices every nonend vertex of G is adjacent with at least one end vetex then $\gamma_{c r s}=C$.

Proof: For necessary condition, let $V_{1}=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots . v_{l}\right\} \subseteq V(G)$ be set of all end vertices in G. Let $V_{2} \subseteq\left\{V(G)-V_{1}\right\}$ forms a $\gamma-$ set of G. And let $A=\left\{v_{1}, v_{2}, \ldots \ldots \ldots \ldots, v_{m}\right\} \subseteq V_{2}$ be the set of cut vertices of G. Suppose $V_{3}=\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots ., v_{n}\right\} \subseteq V_{2}$ be the set of nonend vertices. Then there exists at least one vertex v_{i} which is not adjacent to an end vertex. Since $v_{j} \in N\left(v_{i}\right)$ and $v_{j} \notin V_{2}$ and $v_{i} \in V_{2}$ then $<V(G)-$ $V_{2}>$ is disconnected and we consider the following cases.

Case1: Suppose G is a tree. Then $A=\left\{v_{1}, v_{2}, \ldots \ldots, v_{n}\right\}$ be the set of all nonend vertices which are cutvertices. Suppose there exists $V^{\prime}{ }_{1} \subseteq A$ which are adjacent to end vertices of T. Now assume there exists at least one vertex $v_{k} \in N\left(V^{\prime}{ }_{1}\right)$ and $v_{k} \notin V_{2}$, since v_{k} is a cutvertex and $<V(T)-V_{2}>$ is disconnected and regular, then $\left|V_{2}\right|>\left|V_{1}\right|$ which gives, $\gamma_{c r s} \neq C$.

Case 2: Suppose G is not a tree. Then there exists at least one block which is cycle. Let v be a vertex which is not incident with an end vertex and $v \in D$ then $\left\langle V-V_{2}\right\rangle$ is not regular hence D is not a $\gamma_{\text {crs }}$ set of G. Then there exists at least one vertex $u \in\left\{V(G)-V_{2}\right\}$ such that $<V(G)-\left\{V_{2} \cup u\right\}>$ is regular and $\gamma_{\text {crs }}-$ set of G. Hence $\left|V_{2} \cup\{u\}\right|>|C|$.

For sufficient conditions, let every nonend vertex of G is adjacent with at least one end vertex. Then $V_{2}=$ $\left\{V(G)-V_{1}\right\}$ is a dominating set of G. Also $<V(G)-V_{2}>$ is disconnected and $\operatorname{deg}\left(v_{i}\right)=0 \forall v_{i} \in$ $\left\{V(G)-V_{1}\right\}$. Thus V_{2} is $\gamma_{c r s}-$ set of G. Since every vertex of V_{2} is a cut vertex, then $\left|V_{2}\right|=|C|$. Clearly $\gamma_{c r s}=C$.

REFERENCES

[1] E. J. Cockayne , R.M Dawes, S.T Hedetniemi ,Total domination in graphs, Networks 10 (1980) 211219.
[2] F. Harary, Graph Theory Addison, Wesly Reading Mass, 1969.
[3] T. W. Haynes, S.T. Hedetniemi, and P.J.slater, Fundamentals of domination in graphs, Marcel Dekker , Inc, Newyork(1998).
[4] S.T. Hedetniemi and R.Laskeer, Connected domination in graphs, Graph Theory and Combinatorics, Cambridge (Academic press London, 1984) 209-217:Mr.86e:05055.
[5] V.R Kulli, Theory of domination in graphs ,Vishwa International publications (2010).
[6] M .H. Muddebihal, Priyanka .H .Mandarvadkar, Global domination in line graphs (2019) 648-652.
[7] E. Sampathkumar, The global domination number of graph, J. Math phy scie.23(1989) 377-385.

