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ABSTRACT: In this paper, we introduce the new concept in domination theory. A dominating set � ⊆
���� is a coregular split dominating set if the induced subgraph < � − � > is regular and disconnected. 

The minimum cardinality of such a set is called a coregular split domination number and is denoted by  


�����. Also we study the graph theoretic property of 
����� and many bounds were obtained interms 

of � and its  relationship with other domination parameters were found. 
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1. INTRODUCTION 

    All graphs considered here are simple and without isolated vertices. Let � = ��, �� be a graph with 

|�| = � and  |�| = �. We denote < � − � > to denote the subgraph induced by the set of vertices of � 

and ���� and �[�] denote the open and closed neighborhood of a vertex �, respectively. Let deg ��� be 

the degree of a vertex � and as usual ���� the minimum degree and ∆��� maximum degree. In general 

we follow the notation and terminology of Harary [2]. 

    A vertex cover in a graph � is a set of vertices that covers all the edges of �. The vertex covering 

number ∝� ��� is a minimum cardinality of a vertex cover in �. An edge cover of a graph � without 

isolated vertices is a set of edges of � that covers all the vertices of � .The edge covering number  !��� 

is a minimum cardinality of a edge cover in �.  

    A line graph "��� is the graph whose vertices corresponds to the edges of � and two vertices in "��� 

are adjacent if and only if the corresponding edges in � are adjacent.  

    A block graph #��� is the graph whose set of vertices is the union of set of blocks of � in which two 

vertices  are adjacent if and only if the corresponding blocks of � are adjacent.  
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    A graph is r-regular when all its vertices have degree  $, namely △ ��� = ���� = $. We begine with 

standard definitions from domination theory. 

    A set � ⊆ � is a dominating set of � if for every vertex  � ∈ � − �, there exists a vertex ' ∈ � such 

that � and ' are adjacent. The minimum cardinality of a dominating set in � is the domination number 

and denoted by   
���. For comprehensive work on the subject has been done in [3]. 

   A dominating set � ⊆ ����of a graph � = ��, �� is called a connected dominating set if the induced 

subgraph < � > is connected. The connected domination number 
���� of � is the minimum cardinality 

of a connected dominating set of � see [4]. 

   A dominating set � ⊆ ���� is a total dominating set of a graph � if the induced graph < � > does not 

contain an isolated vertex. The total domination number 
(��� of � is the minimum cardinality of a total 

dominating set of �. The total domination in graph was introduced by Cockayne et al.[1] in 1980. 

   A dominating set � ⊆ ���� is a cotatal dominating set if the induced subgraph < � − � > has no 

isolated vertices. The cototal domination number 
�(��� of � is the minimum cardinality of cototal 

dominating set of �. 

    A dominating set �of � is called split dominating set if the induced subgraph < � − � >is 

disconnected. The split domination number is 
��� of a graph � is the minimum cardinality of a split 

dominating set of �. 

    A dominating set � of � is called strong split dominating set of � if  < � − � > is totally disconnected 

with at least two vertices. The strong split domination number 
��� of a graph � is the minimum 

cardinality of a strong split dominating set of �[5].  

     A dominating set � of � is a global dominating set if it is also dominating set of  �̅. A 

minimal cardinality of global dominating set is the global domination number and is denoted by 


*���[7]. 

    A dominating set � of  "��� is a global dominating set if it is also dominating set of "��̅�. A 

minimal cardinality of � is a global domination number of  "��� and denoted by 
*+��� see[6]. 

2. RESULTS 

     We develope the following results for some standard graphs. 

Theorem 1:  a]  For any path ,- with , ≥ 2 vertices,  

                           
��0,-1 = 2-
34. 

                     b]  For any star 5!,- with , ≥ 2 vertices, 

                           
��05!,-1 =1. 
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Theorem 2: For any connected �,, �� graph � with , ≥ 3, then 

                             
����� + 
��� ≤ , . 

Proof: Let �! = { �!, �3, … … … … , �;} ⊆ ���� be the set of all non end vertices in  �. The �=! ⊆ �! forms 

a 
 − >?@ of �. Let �3 = { �!, �3, … … … … . . , �B} ⊆ �! where every �C ∈ �3 is adjacent to end vertices. 

Further �D = { �!, �3, … … … . . . . , �E} ⊆ �! be the set of vertices with maximum degree. Suppose <
���� − �3 ∪ �D > is disconnected and ∀ �CH [���� − {�3 ∪ �D}] has same degree < �3 ∪ �D > forms a 


�� − >?@. Otherwise there exists a set I = { �!, �3, … … … … , �E} of vertices which are neighbors of some 

vertices in �D . Now < ���� − �3 ∪ �D ∪ I >  is disconnected with isolated vertices of cardinality at least 

two. Then  |�3 ∪ �D ∪ I| + |�!| ≤ ����, which gives  
����� + 
��� ≤ , . 

 The following result gives an upper bounds for 
����� in terms of  
� and  
( of  �. 

Theorem 3: For any connected �,, �� graph � with ≥ 3 , then 

                           
����� ≤ 
� + 
(  and  � ≠ K-  �� > 5�.  

Proof: Let � = { �!, �3, … … … … , �E} be the vertex set of �. Now for the graph � ≠ K- with , ≥ 4 , 
suppose , ≤ 4 the 
� + 
( = 3 = 
����� and result holds. Further if � > 5, |
� + 
(| = 3 and 

 
��NK-O = -
3 + 1 > |
� +  
(|. Hence � ≠ K- with  � > 5. Now let I = { �!, �3, … … … … , �;} ⊆ ���� 

suppose for every � ∈ {���� − I} is adjacent to at least one vertex of  I. If < I > has no isolated vertices 

then I itself is a total dominating set of  �. Otherwise let � ∈ {���� − I} and if {I} ∪ {�} has no isolated 

vertex. Clearly {I} ∪ {�} is a minimal total dominating set of  �. Let  I! = { �!, �3, … … … . … , �;}  be the 

set of all end vertices in �. I3 = { ���� − I!} be the set of all nonend vertices in �. Suppose there exists a 

minimal set of vertices such that �[�C] = ���� ∀ �C ∈ I3 , 1 ≤ Q ≤ R then  I3 forms a minimal dominating 

set of �. Further if  I3 = { ���� − I!} has exactly one component then I3 itself is a connected dominating 

set of �. Suppose I3 has more than one component then attach the minimum set of vertices. S= = I3 ∪
{', T} which are in ' − T path, ∀ ', T ∈ {���� − I3}. Hence S=is a minimal connected dominating set of 

�. Further let I3 = {�!, �3, … … … . , �C} be the set of all nonend vertices suppose there exists a minimal 

dominating set S such that the distance between the two vertices of S is at least two clearly  there exists 

more than one component and each component in < � − S > is regular forms 
�� − >?@. Thus |S| ≤
|I3| + |I|. Hence  
����� ≤ 
� + 
( . 

         Now  the next theorem gives lower bound on the coregular split domination number of graph ���. 

Theorem 4: For any connected �,, �� graph � with  , ≥ 3 , then 

                            
����� ≥ 
*+��� − 1. 

Proof: Let � = { ?!, ?3, … … … … , ?;} be the set of edges in �. Now consider �! = { ?!, ?3, … . . … , ?E} ⊆
���� be the set of edges with maximum edge degree and �3 = { ?!, ?3, … . . … , ?U} ⊆ ���� be the set of 

edges with minimum edge degree. Suppose �=! ⊆ �! and �=3 ⊆ �3 ∀ � ∈ [�["���] − {�=! ∪ �=3}] is 

adjacent to at least one vertex of {�=! ∪ �=3} and {�=! ∪ �=3VVVVVVVVVVVV}. Since each edge of � is a vertex in "���, 

then  {�=! ∪ �=3} is a global dominating set of "���. Further let � = {�!, �3, … . … … . , �;} be the set of 

vertices in �, such that [���� − ����] is regular and which gives more than one component. Then � 
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forms a minimal coregular split dominating set of �. Thus |�| ≥ |�=! ∪ |�=3| − 1| hence 
����� ≥

*+��� − 1. 

Theorem 5: For any connected �,, �� graph � with � ≥ 3 ,then 

                           
����� ≥ � −  ∝! ���+
*��� − 1. 

Proof: Let I = {�!, �3, �D, … … . , �+} be set of all nonend vertices in �. Let #! = {�!, �3, … … . . , �B} ⊆ I 

be a set of vertices with maximum degree. #3 = {�!, �3, … … . . �;} ⊆ I be set of vertices with minimum 

degree in �.The distance between two vertices of #! and #3 is at most 2. Hence {#! ∪ #3} is 
- set if 

[���� − {#!} ∪ {#3}] disconnected and having vertices with same degree forms a 
 − >?@. Let # =
{ ?!, ?3, … … . . , ?;} be the set of all end edges. Suppose #= = {?!, ?3, … … … , ? E} ⊆ ���� − # be the set of 

edges such that  dist �?C , ?U� ≥ 2  1 ≤ Q ≤ R,  1 ≤ W ≤ 5, then # ∪ X,where X ⊆ #= be the minimal set of 

edges which covers all the vertices in �, such that |# ∪ X| =∝! ���. Further let S = {�!, �3, … . … . . , �-} ⊆
���� and S ⊆ ���̅�. If  �[S] = ���̅�. Then S is dominating set for � and ��̅�. Therefore S forms a global 

dominating set of �. Now, we have |#! ∪ #3| ≤ � − |# ∪ X| + |S| − 1 , which gives  
����� ≥ � −
 ∝! ���+
*��� − 1. 

     We establish the relationship between, split domination total domination with coregular split domination 

number in the following theorem. 

Theorem 6: For any connected �,, �� graph � with  
�� is 1 −regular then 

                                 
����� ≤ 
��� + 
(��� − 1  and � ≠ K-  �� > 5�. 

Proof: Let I! = {�!, �3, �D, … … . , �;} ⊆ ���� be the set of all end vertices in � and  I=! = ���� − I!. 

Suppose there exists vertex set X ⊂ I=! such that � = [���� − X] is a dominating set of �. Hence < � > 

has more than one component with same degree than � forms a 
�� − >?@. Suppose there exists set of 

vertices Z ⊆ I!
= where Z ∪ I! covers all vertices in � and if the subgraph < ���� − {Z ∪ I!} > does not 

containany isolated vertex Z ⊂ I! itself is a cototal dominating set of �.Otherwise if there exists a vertex 

� ∈ [���� − {Z ∪ I!} with deg��� = 0. Then Z ∪ I! ∪ {�} forms a minimal 
�( − >?@ of �. Further let  

#= = {�!, �3, … … . , �E} ⊆ ���� be the set all nonend vertices in �. Then #= ⊆ I!
= forms a minimal 
 −

>?@ of �. If < � − � > is disconnected then #= forms a split dominating set of �.Hence  |�| ≤ |#=| +
|Z| ∪ I! ∪ {�} − 1 and 
����� ≤ 
��� + 
(��� − 1. 

Theorem 7: For any non-trivial tree \ with , ≥ 2, then 
���\� =  ]�\� if and only if 
��  is zero regular.  

Proof : Suppose 
���\� =  ]�\� and 
�� − >?@ is not zero regular. Let � = {�!, �3, … … … . . , �;}be a 

dominating set of \ such that the distance between two vertices of � be at most three. If < � − � > is 

disconnected we consider the following cases. 

Case1: Assume there exists at least one edge ? ∈ ��\� − �  which is a component of disconnected <
��\� − � >. Then 
�� is not zero regular, a contradiction. 

Case2: Assume there exists a vertex � ∈ 
�� − >?@ and    � ∉  ] − >?@. Then there exists ���� = '. Such 

that an edge '� ∈ {��\� − �} a contradiction.  
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Conversly, suppose  
���\� =  ]�\� , and  
���\�  is zero regular . Let � = {�!, �3, … . … … . . , �;} be a 

set of vertices such that the distance between two vertices of � be at most two. Hence ��'� ∪ ���� =
_,∀ ', � ∈ � and edge of \ covered  by the set �. Clearly |�| =  ]�\� since � is minimal dominating set 

of \ and < � − � > is disconnected with deg ���=0 ∀ � ∈ < � − � >. Then � is also 
�� − >?@ which is   

zero regular. Hence 
���\� =  ]�\�. 

     In the following Theorem  , we establish the upper bound for  
���\� interms of vertices of  graph �. 

Theorem 8: For any non-trivial tree \ with , ≥ 2, then 
���\� ≤ , − ` . Where  ` is the number of end 

vertices in \. 

Proof : Let I = {�!, �3, … . … … . . . , �B} ⊆ ��\� be the set of all end vertices in \ with |I| = `. Let � =
{�!, �3, … . … … . . . , �;} be a dominating set of \.Such that the distance between two vertices of � is at most 

three. If < � − � > has more than one component. Then vertices of each component have same degree and 

all component are also have same degree. Then � is 
�� − >?@ of a tree \. So that |�| = , − |I| and gives 


���\� ≤ , − `. 

Theorem 9: For any non-trivial tree \ with  , ≥ 2, then 
���\� = 
�\�. 

Proof: Let a! = {�!, �3, �D, … … . , �+} be set of all vertices in ��\�. Let a3 = {�!, �3, �D, … … . , �B} be set 

of all nonend vertices adjacent to end vertices. aD = {�!, �3, �D, … … . , �;} be set of all nonend vertices  

which are not adjacent to end vertices. Let there exists a=D ⊆ aD such that � = {a3} ∪ {a=D} ⊆ ��\�. 

Where ∀ �C ∈ ��\� − � is adjacent to at least one vertex of �. Hence � is a minimal dominating set of �. 

Further if ∀ �C ∈ < � − � > deg��C� = 0 with at least two vertices. Hence � is a 
�� − >?@ of �. 

Simillarly by definition of strong split dominating set the subgraph  < � − � >is a null set with at least 

two vertices . Hence � is also a 
 − >?@ of �. Clearly 
���\� = 
�\�. 

Further if there exists a set � = {?!, ?3, … . … … . . . , ?U} be edges in < � − � > and each component of   � −
� is b3. Then � is a 
�� − >?@ but not  
 − >?@. For equality if I = {�!, �3, … . … … . . , �E} be the set of 

vertices which are ���B�, ∀  �B ∈ # where # = {�!, �3, �D, … … . , �+} such that {I} ∪ {#} forms the 

component as b3  in < � − � > . Then ∀�C ∈ [{� − �} − {I}] or [{� − �} − {#}] is an isolate. Thus 

either {�} − {I} or {�} − {#} is a  
�� − >?@ and also a  
�\� − >?@ of a tree. Hence 
���\� = 
�\�. 

Theorem 10: For any non-trivial tree \ with  , ≥ 3, then 

                                         
���\� + 3 ≥ 2cdef
3 4. 

Proof: Let � = {�!, �3, … . … … . . . , �+} be vertex set of \ and � = {?!, ?3, … . … … . . . , ?B} be edge set of \. 

And I! = {�!, �3, �D, … … . , �B} ⊆ ��\� be set of all nonend vertices which are not adjacent to end 

vertices. If the distance between the two vertices of I! and I3 is at most 2. Suppose there exists a set I3
= ⊆

I3 hence S = [��\� − {I! ∪ I3
=}] is a dominating set of \ with the property that < S > is totally 

disconnected . Then S is a 
�� − >?@ of \. Let a = {I! ∪ I3} and ∀ �C ∈ ��\� − a is adjacent to at least 

one vertex of a then a is dominating set of \ and < a > is connected. Hence a is 
� − >?@ of a tree \. 

Since every vertex of 
� − >?@ is incident with the edges of \ then �� − a�/2 ≤ {S + 3}, implies that 

|S| + 3 ≥ 2|h|i|j|
3 4  and gives , 
���\� + 3 ≥ 2cdef

3 4. 

       Next theorem gives upper bound for 
���\�. 
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Theorem11: For any non-trivial tree \ with  , ≥ 3, then 

                                         
���\� ≤ 
([#�\�] + ����. 

Proof: Let �! = {�!, �3, �D, … … . , �;} be the set of end vertices of  ��\�. �3 = {�!, �3, �D, … … . , �B} be the 

set of vertices adjacent to �! there exists �D = {��\� − �! ∪ �3} then S = {�3 ∪ �D} is a minimal 

dominating set of \. Suppose there exists a  ���D� ∩ ���3� = ∅ ∀ �3, �D ∈ S. Hence each edge of \covers 

by the set S and  < � − S > is disconnected such that deg��C� = 0 ∀ �C ∈< � − S >  then S is a 
�� − >?@ 

which is zero regular. Further let �; be dominating set of block graph #�\� of a tree \ and I! =
�[#�\� − �;] such that �! ⊆ I! and  < �! ∪ �; > has no isolated vertex . Then {�! ∪ �;} is 
( − >?@ of 

\. Let � be a point of minimum degree ��\�. Hence |S| ≤ |�! ∪ �;| + |�| which gives, 
���\� ≤

([#�\�] + ����. 

          In the following two lemmas we have the sharp bound attained to 
�� by considering each block of 

� which is complete graph  bB and b;. 

Lemma 1. If � has exactly one nonend block b; and all vertices of b; are incident with blocks which are 

bB with ` ≥ R (or) ` < R. Then  
�� = R. 

Proof: Let b; be a nonend block of � with vertex set  � = {�!, �3, … . … … . . . , �;}. Suppose all vertices of 

b; are incident with blocks which are bB. We consider the following cases. 

Case1: Suppose each vertex of b; is incident with " number of blocks which are complete graphs bB with 

` ≥ R. Then � is a dominating set of �. Also the induced subgraph < ���� − � > is disconnected and 

` − 1 regular. Hence |�| = 
����� , which is also equal to R. Clearly 
�� = R. 

Case2: Suppose each vertex of b; is a cut vertex and incident with " number of blocks which are bB with 

` < R. Then the induced subgraph < ���� − � > is again disconnected and ` − 1 regular. Since ∀ �C ∈
� is adjacent to at least one vertex of ���� − �, then � is a 
�� − >?@ of � and |�| = R. Clearly 
�� = R.  

         From the above lemma we concluded that, if there exists at least one block which is either bBd!  or 

bBi! in "  number of blocks . Then there does not exists 
�� − >?@. 

Lemma 2: If � has exactly one cut vertex Z incident with blocks which are b; , R ≥ 2, then 
�� = Z. 

Proof: Suppose � has exactly one cut vertex � which is incident with ` number of b;�R ≥ 2� blocks. 

Then every vertex of {� − �} is adjacent to �.Thus {�} is a 
 − >?@ of � and  < � − � > is disconnected 

with `  numbere of b;d! blocks. Hence each component of < � − � > is b;d! regular and {�} is a  
�� −
>?@ of  �. Since � is a cu vertex then  
�� = Z. 

Theorem12: For any graph � with Z cut vertices 
�� = Z if and only if � has exactly one nonend block 

b;  incident with complete blocks which are  b;d�i!. 

Proof: Suppose 
�� = Z. Let a = m#!, #3, … … … . , #;n be the set of R blocks of �. Let I! =
{#!, #3,. . . , #-} be the end blocks in �. Such that b; = a − I! which is nonend block of �. Let 

{�!, �3, … . … … . . . , �;} = �[b;]. Suppose "! = {�!, �3, �D, … … . , �C} ⊆ �[b;] be the set of cut vertices. 

We consider the following cases. Let � be a 
�� − >?@ of �. 

Case1: Suppose |"!| cut vertices are incident with blocks which are b;d�. Then "! is dominating set of �. 

But < ���� − "! > is not regular. Hence  
�� = "! , contradiction. 

Case 2: Suppose {�!, �3, … . … … . . . , �; } ∈ "! are incident with b;d�i3 blocks. Then {"!} is a dominating 

set of �. Further < ���� − {�!, �3, … . … … . . . , �;} > is not a regular, a contradiction.  
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Case 3: Suppose the number of cut vertices |"!| > |�[b;] − "! |. Then "! is a dominating set of � and <
�[�] − "! >  is not regular , a contradiction .  

Conversly, suppose � has {"!} = Z cut vertices and exactly one nonend block b; incident with complete 

blocks  b;d�i!. Then {"!} is a dominating set of �. Further < ���� − "! > is regular with more than one 

component. Clearly � forms a 
�� − >?@. Hence |�| = |"!| gives  
�� = Z.  

Theorem13: For any graph � with Z cut vertices every nonend vertex of � is adjacent with at least one end 

vetex then 
�� = Z. 

Proof: For necessary condition, let �! = {�!, �3, �D, … … . , �+} ⊆ ���� be set of all end vertices in �. Let 

�3 ⊆ {���� − �!} forms a 
 − >?@ of �. And let I = {�!, �3, … . … … . . . , �B} ⊆ �3 be the set of cut vertices 

of �. Suppose �D = {�!, �3, �D, … … . , �;} ⊆ �3  be the set of nonend vertices. Then there exists at least one 

vertex �C which is not adjacent to an end vertex . Since �U ∈ ���C�  and �U ∉ �3 and �C ∈ �3 then < ���� −
�3 > is disconnected and we consider the following cases. 

Case1: Suppose � is a tree. Then I = {�!, �3, … . . . , �;} be the set of all nonend vertices which are 

cutvertices. Suppose there exists �=! ⊆ I which are adjacent to end vertices of \. Now assume there exists 

at least one vertex �E ∈ ���=!� and �E ∉ �3 , since �E is a cutvertex and < ��\� − �3 > is disconnected 

and regular, then |�3| > |�!| which gives,  
�� ≠ Z. 

Case 2: Suppose � is  not a tree . Then there exists at least one block which is cycle. Let � be a vertex 

which is not incident with an end vertex and � ∈ � then < � − �3 > is not regular hence � is not a 
�� −
>?@ of �. Then there exists at least one vertex ' ∈ {���� − �3} such that < ���� − {�3 ∪ '} > is regular 

and 
�� − >?@ of �. Hence |�3 ∪ {'}| > |Z|. 

For sufficient conditions, let every nonend vertex of � is adjacent with at least one end vertex. Then �3 =
{���� − �!} is a dominating set of �. Also < ���� − �3 > is disconnected and deg��C� = 0  ∀ �C ∈
{���� − �!}. Thus �3 is 
�� − >?@ of � . Since every vertex of �3 is a cut vertex , then |�3| = |Z|. Clearly 


�� = Z.  
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